Issue published February 17, 2025 Previous issue

On the cover: FOXO1 activation by VISTA restrains pulmonary ILC2 functions

Kazemi et al. report that VISTA is a critical immune checkpoint that regulates pulmonary ILC2 activity via the FOXO1 pathway, suggesting a potential therapeutic strategy for allergic asthma. The cover art illustrates how VISTA signaling through the FOXO1 pathway reprograms ILC2 mitochondrial activity, reducing ILC2-mediated lung inflammation (depicted as a red lung) by suppressing type 2 immune responses and ultimately restoring respiratory immune tolerance (depicted as a blue lung). Multiple images were generated using OpenAI’s DALL-E 2 and edited/assembled with Adobe Photoshop and Lightroom tools.

Letters to the Editor
Abstract

Authors

Jiejie Zhu, Tianyin Sun, Hanren Dai

×

Abstract

Authors

Siqi Ming, Xingyu Li, Jingxian Shu, Xi Huang, Yongjian Wu

×
Review Series
Abstract

The maternal microbiome is emerging as an important factor that influences the neurological health of mothers and their children. Recent studies highlight how microbial communities in the maternal gut can shape early-life development in ways that inform long-term health trajectories. Research on the neurodevelopmental effects of maternal microbiomes is expanding our understanding of the microbiome-gut-brain axis to include signaling across the maternal-offspring unit during the perinatal period. In this Review, we synthesize existing literature on how the maternal microbiome modulates brain function and behavior in both mothers and their developing offspring. We present evidence from human and animal studies showing that the maternal microbiome interacts with environmental factors to impact risk for neurodevelopmental abnormalities. We further discuss molecular and cellular mechanisms that facilitate maternal-offspring crosstalk for neuromodulation. Finally, we consider how advancing understanding of these complex interactions could lead to microbiome-based interventions for promoting maternal and offspring health.

Authors

Stephanie B. Orchanian, Elaine Y. Hsiao

×

Abstract

Asthma is a common chronic respiratory disease affecting people of all ages globally. The airway hosts diverse microbial communities increasingly recognized as influential in the development and disease course of asthma. Here, we review recent findings on the airway microbiome in asthma. As relationships between the airway microbiome and respiratory health take root early in life, we first provide an overview of the early-life airway microbiome and asthma development, where multiple cohort studies have identified bacterial genera in the infant airway associated with risk of future wheeze and asthma. We then address current understandings of interactions between environmental factors, the airway microbiome, and asthma, including the effects of rural/urban environments, pet ownership, smoking, viral illness, and antibiotics. Next, we delve into what has been observed about the airway microbiome and asthma phenotypes and endotypes, as airway microbiota have been associated with asthma control, severity, obesity-related asthma, and treatment effects as well as with type 2 high, type 2 low, and more newly described multi-omic asthma endotypes. We then discuss emerging approaches to shape the microbiome for asthma therapy and conclude the Review with perspectives on future research directions.

Authors

Young Jin Kim, Supinda Bunyavanich

×
Editor's note
Abstract

Authors

Elizabeth M. McNally

×
Commentaries
Abstract

Lysosome storage dysfunction plays a central role in numerous human diseases, but a lack of appropriate tools has hindered lysosomal content profiling in clinical settings. In this issue of the JCI, Saarela et al. introduce a method called tagless LysoIP that enabled rapid isolation of intact lysosomes from blood and brain cells via immunoprecipitation of the endogenous protein TMEM192. Applied to the neurodegenerative lysosomal storage disorder known as Batten disease (caused by mutations in the CLN3 gene), tagless LysoIP revealed substantial accumulation of glycerophosphodiesters (GPDs) in patient lysosomes. These findings highlight the role of CLN3 in GPD clearance and present an innovative method that will enable biomarker discovery and therapeutic advancement in lysosomal diseases.

Authors

Ali Shilatifard, Issam Ben-Sahra

×

Abstract

Nerve growth factor (NGF) signaling is a clinically validated target for the treatment of several prevalent types of chronic pain; however, addressing safety concerns remain a key challenge. In this issue of the JCI, Peach et al. take a major step forward in this area by deciphering complexities in the signaling of the NGF receptor TrkA, finding that neuropilin 1 (NRP1) acted as a coreceptor for NGF actions at TrkA and the receptor complex required scaffolding from GIPC1. Using a mix of techniques, including animal behavioral models, electrophysiology on mouse and human dorsal root ganglion (DRG) neurons, and elegant biochemical pharmacology, the authors demonstrated that this therapeutic target might more safely manipulate NGF signaling to achieve pain alleviation. While there are still important questions to answer, the innovative work paves the way for the development of nonopioid pain therapeutics.

Authors

Andi Wangzhou, Theodore J. Price

×

Abstract

Serologic biomarkers for the early diagnosis of EBV-associated nasopharyngeal carcinoma (NPC) have been identified from population studies, but a protective antibody signature in cancer-free seropositive carriers remains undefined. In this issue of the JCI, Kong et al. show that high levels of IgG against EBV glycoprotein 42 (gp42) were associated with reduced NPC risk in three independent prospective cohorts from southern China. EBV virions contain gp42, which complexes with gH-gL to facilitate fusion with B cells by binding to HLA class II (HLA-II). In this study, HLA-II was detected on non-antigen-presenting cells in a proportion of premalignant nasopharyngeal tissues, which may prime the nasopharyngeal epithelium for infection. In vitro, HLA-II expression in a nasopharyngeal cell line encouraged infection by EBV derived from B cells or epithelial cells. These findings suggest that a vaccine that stimulates gp42-IgG production may reduce the risk of EBV-associated NPC in endemic regions.

Authors

Benjamin E. Warner, Kathy H.Y. Shair

×

Abstract

Chronic pain is a debilitating condition that affects up to 1.5 billion people globally. Advancing pain management depends on a thorough understanding of the types of pain experienced by patients and the underlying mechanisms driving it. N-type calcium channels play a crucial role as therapeutic targets for managing chronic pain. In this issue of the JCI, Tang et al. introduce C2230, an N-type calcium channel blocker that inhibited CaV2.2 channels during high frequency stimulation with little effect on other ion channels in the pain pathway across multiple models. C2230 offers a promising analgesic for use in therapeutic intervention.

Authors

Maria A. Gandini, Gerald W. Zamponi

×

Abstract

Truncation variants in the gene TTN encoding titin are the most common cause of familial dilated cardiomyopathy (DCM), with both haploinsufficiency and “poison peptide” implicated as contributory mechanisms of disease. In this issue of the JCI, Kim et al. identify a highly conserved enhancer element approximately 500 bp downstream of the transcriptional start site of TTN in intron 1, which they demonstrated to be critical in regulating TTN expression. This work helps to further clarify the relative role of haploinsufficiency in TTN-related DCM and provides a potential target for therapies aimed at treating TTN-related DCM.

Authors

Dominic E. Fullenkamp

×
Research Letter
Abstract

Authors

Tasha Tsao, Amanda M. Buck, Lilian Grimbert, Brian H. LaFranchi, Belen Altamirano Poblano, Emily A. Fehrman, Thomas Dalhuisen, Priscilla Y. Hsue, J. Daniel Kelly, Jeffrey N. Martin, Steven G. Deeks, Peter W. Hunt, Michael J. Peluso, Oscar A. Aguilar, Timothy J. Henrich

×
Research Articles
Abstract

Dilated cardiomyopathy (DCM) due to genetic disorders results in decreased myocardial contractility, leading to high morbidity and mortality rates. There are several therapeutic challenges in treating DCM, including poor understanding of the underlying mechanism of impaired myocardial contractility and the difficulty of developing targeted therapies to reverse mutation-specific pathologies. In this report, we focused on K210del, a DCM-causing mutation, due to 3-nucleotide deletion of sarcomeric troponin T (TnnT), resulting in loss of Lysine210. We resolved the crystal structure of the troponin complex carrying the K210del mutation. K210del induced an allosteric shift in the troponin complex resulting in distortion of activation Ca2+-binding domain of troponin C (TnnC) at S69, resulting in calcium discoordination. Next, we adopted a structure-based drug repurposing approach to identify bisphosphonate risedronate as a potential structural corrector for the mutant troponin complex. Cocrystallization of risedronate with the mutant troponin complex restored the normal configuration of S69 and calcium coordination. Risedronate normalized force generation in K210del patient-induced pluripotent stem cell–derived (iPSC-derived) cardiomyocytes and improved calcium sensitivity in skinned papillary muscles isolated from K210del mice. Systemic administration of risedronate to K210del mice normalized left ventricular ejection fraction. Collectively, these results identify the structural basis for decreased calcium sensitivity in K210del and highlight structural and phenotypic correction as a potential therapeutic strategy in genetic cardiomyopathies.

Authors

Ping Wang, Mahmoud Salama Ahmed, Ngoc Uyen Nhi Nguyen, Ivan Menendez-Montes, Ching-Cheng Hsu, Ayman B. Farag, Suwannee Thet, Nicholas T. Lam, Janaka P. Wansapura, Eric Crossley, Ning Ma, Shane Rui Zhao, Tiejun Zhang, Sachio Morimoto, Rohit Singh, Waleed Elhelaly, Tara C. Tassin, Alisson C. Cardoso, Noelle S. Williams, Hayley L. Pointer, David A. Elliott, James W. McNamara, Kevin I. Watt, Enzo R. Porrello, Sakthivel Sadayappan, Hesham A. Sadek

×

Abstract

Dysregulated eIF4E-dependent translation is a central driver of tumorigenesis and therapy resistance. eIF4E-binding proteins (4E-BP1/2/3) are major negative regulators of eIF4E-dependent translation that are inactivated in tumors through inhibitory phosphorylation or downregulation. Previous studies have linked PP2A phosphatase(s) to activation of 4E-BP1. Here, we leveraged biased small-molecule activators of PP2A (SMAPs) to explore the role of B56-PP2A(s) in 4E-BP regulation and the potential of B56-PP2A activation for restoring translational control in tumors. SMAP treatment promoted PP2A-dependent hypophosphorylation of 4E-BP1/2, supporting a role for B56-PP2As (e.g., B56α-PP2A) as 4E-BP phosphatases. Unexpectedly, SMAPs induced transcriptional upregulation of 4E-BP1 through a B56-PP2A→TFE3/TFEB→ATF4 axis. Cap-binding and coimmunoprecipitation assays showed that B56-PP2A(s) activation blocks assembly of the eIF4F translation initiation complex, and cap-dependent translation assays confirmed the translation-inhibitory effects of SMAPs. Thus, B56-PP2A(s) orchestrate a translation-repressive program involving transcriptional induction and activation of 4E-BP1. Notably, SMAPs promoted 4E-BP1–dependent apoptosis in tumor cells and potentiated 4E-BP1 function in the presence of ERK or mTOR inhibitors, agents that rely on inhibition of eIF4E-dependent translation for antitumor activity. These findings, combined with the ability of SMAPs to regulate 4E-BP1 in vivo, highlight the potential of PP2A activators for cancer therapy and overcoming therapy resistance.

Authors

Michelle A. Lum, Kayla A. Jonas, Shreya Parmar, Adrian R. Black, Caitlin M. O’Connor, Stephanie Dobersch, Naomi Yamamoto, Tess M. Robertson, Aidan Schutter, Miranda Giambi, Rita A. Avelar, Analisa DiFeo, Nicholas T. Woods, Sita Kugel, Goutham Narla, Jennifer D. Black

×

Abstract

Antagonists — such as Ziconotide and Gabapentin — of the CaV2.2 (N-type) calcium channels are used clinically as analgesics for chronic pain. However, their use is limited by narrow therapeutic windows, difficult dosing routes (Ziconotide), misuse, and overdoses (Gabapentin), as well as a litany of adverse effects. Expansion of novel pain therapeutics may emerge from mechanism-based interrogation of CaV2.2. Here, we report the identification of C2230, an aryloxy-hydroxypropylamine, as a CaV2.2 blocker. C2230 trapped and stabilized inactivated CaV2.2 in a slow-recovering state and accelerated the open-state inactivation of the channel, conferring an advantageous use-dependent inhibition profile. C2230 inhibited CaV2.2 during high-frequency stimulation, while sparing other voltage-gated ion channels. C2230 inhibited CaV2.2 in dorsal root and trigeminal ganglia neurons from rats, marmosets, and humans in a G-protein-coupled-receptor–independent manner. Further, C2230 reduced evoked excitatory postsynaptic currents and excitatory neurotransmitter release in the spinal cord, leading to relief of neuropathic, orofacial, and osteoarthritic pain-like behaviors via 3 different routes of administration. C2230 also decreased fiber photometry-based calcium responses in the parabrachial nucleus, mitigated aversive behavioral responses to mechanical stimuli after neuropathic injury, and preserved protective pain responses, all without affecting motor or cardiovascular function. Finally, site-directed mutation analysis demonstrated that C2230 binds differently than other known CaV2.2 blockers, making it a promising lead compound for analgesic development.

Authors

Cheng Tang, Kimberly Gomez, Yan Chen, Heather N. Allen, Sara Hestehave, Erick J. Rodríguez-Palma, Santiago Loya-Lopez, Aida Calderon-Rivera, Paz Duran, Tyler S. Nelson, Siva Rama Raju Kanumuri, Bijal Shah, Nihar R. Panigrahi, Samantha Perez-Miller, Morgan K. Schackmuth, Shivani Ruparel, Amol Patwardhan, Theodore J. Price, Paramjit S. Arora, Ravindra K. Sharma, Abhisheak Sharma, Jie Yu, Olga A. Korczeniewska, Rajesh Khanna

×

Abstract

Despite the revolutionary achievements of chimeric antigen receptor (CAR) T cell therapy in treating cancers, especially leukemia, several key challenges still limit its therapeutic efficacy. Of particular relevance is the relapse of cancer in large part as a result of exhaustion and short persistence of CAR-T cells in vivo. IL-2–inducible T cell kinase (ITK) is a critical modulator of the strength of T cell receptor signaling, while its role in CAR signaling is unknown. By electroporation of CRISPR-associated protein 9 (Cas9) ribonucleoprotein (RNP) complex into CAR-T cells, we successfully deleted ITK in CD19-CAR-T cells with high efficiency. Bulk and single-cell RNA sequencing analyses revealed downregulation of exhaustion and upregulation of memory gene signatures in ITK-deficient CD19-CAR-T cells. Our results further demonstrated a significant reduction of T cell exhaustion and enhancement of T cell memory, with significant improvement of CAR-T cell expansion and persistence both in vitro and in vivo. Moreover, ITK-deficient CD19-CAR-T cells showed better control of tumor relapse. Our work provides a promising strategy of targeting ITK to develop sustainable CAR-T cell products for clinical use.

Authors

Zheng Fu, Zineng Huang, Hao Xu, Qingbai Liu, Jing Li, Keqing Song, Yating Deng, Yujia Tao, Huifang Zhang, Peilong Wang, Heng Li, Yue Sheng, Aijun Zhou, Lianbin Han, Yan Fu, Chenzhi Wang, Saurav Kumar Choudhary, Kaixiong Ye, Gianluca Veggiani, Zhihong Li, Avery August, Weishan Huang, Qiang Shan, Hongling Peng

×

Abstract

BACKGROUND Previous epidemiologic studies of autoimmune diseases in the US have included a limited number of diseases or used metaanalyses that rely on different data collection methods and analyses for each disease.METHODS To estimate the prevalence of autoimmune diseases in the US, we used electronic health record data from 6 large medical systems in the US. We developed a software program using common methodology to compute the estimated prevalence of autoimmune diseases alone and in aggregate that can be readily used by other investigators to replicate or modify the analysis over time.RESULTS Our findings indicate that over 15 million people, or 4.6% of the US population, have been diagnosed with at least 1 autoimmune disease from January 1, 2011, to June 1, 2022, and 34% of those are diagnosed with more than 1 autoimmune disease. As expected, females (63% of those with autoimmune disease) were almost twice as likely as males to be diagnosed with an autoimmune disease. We identified the top 20 autoimmune diseases based on prevalence and according to sex and age.CONCLUSION Here, we provide, for what we believe to be the first time, a large-scale prevalence estimate of autoimmune disease in the US by sex and age.FUNDING Autoimmune Registry Inc., the National Heart Lung and Blood Institute, the National Center for Advancing Translational Sciences, the Intramural Research Program of the National Institute of Environmental Health Sciences.

Authors

Aaron H. Abend, Ingrid He, Neil Bahroos, Stratos Christianakis, Ashley B. Crew, Leanna M. Wise, Gloria P. Lipori, Xing He, Shawn N. Murphy, Christopher D. Herrick, Jagannadha Avasarala, Mark G. Weiner, Jacob S. Zelko, Erica Matute-Arcos, Mark Abajian, Philip R.O. Payne, Albert M. Lai, Heath A. Davis, Asher A. Hoberg, Chris E. Ortman, Amit D. Gode, Bradley W. Taylor, Kristen I. Osinski, Damian N. Di Florio, Noel R. Rose, Frederick W. Miller, George C. Tsokos, DeLisa Fairweather

×

Abstract

PARP inhibitors (PARPi) have received regulatory approval for the treatment of several tumors, including prostate cancer (PCa), and demonstrate remarkable results in the treatment of castration-resistant prostate cancer (CRPC) patients characterized by defects in homologous recombination repair (HRR) genes. Preclinical studies showed that DNA repair genes (DRG) other than HRR genes may have therapeutic value in the context of PARPi. To this end, we performed multiple CRISPR/Cas9 screens in PCa cell lines using a custom sgRNA library targeting DRG combined with PARPi treatment. We identified DNA ligase 1 (LIG1), essential meiotic structure-specific endonuclease 1 (EME1), and Fanconi anemia core complex associated protein 24 (FAAP24) losses as PARPi sensitizers and assessed their frequencies from 3% to 6% among CRPC patients. We showed that concomitant inactivation of LIG1 and PARP induced replication stress and DNA double-strand breaks, ultimately leading to apoptosis. This synthetic lethality (SL) is conserved across multiple tumor types (e.g., lung, breast, and colorectal), and its applicability might be extended to LIG1-functional tumors through a pharmacological combinatorial approach. Importantly, the sensitivity of LIG1-deficient cells to PARPi was confirmed in vivo. Altogether, our results argue for the relevance of determining the status of LIG1 and potentially other non-HRR DRG for CRPC patient stratification and provide evidence to expand their therapeutic options.

Authors

Giulia Fracassi, Francesca Lorenzin, Francesco Orlando, Ubaldo Gioia, Giacomo D’Amato, Arnau S. Casaramona, Thomas Cantore, Davide Prandi, Frédéric R. Santer, Helmut Klocker, Fabrizio d’Adda di Fagagna, Joaquin Mateo, Francesca Demichelis

×

Abstract

Vitamin D regulates mineral homeostasis. The most biologically active form of vitamin D, 1,25-dihydroxyvitamin D (1,25D), is synthesized by CYP27B1 from 25-dihydroxyvitamin D (25D) and is inactivated by CYP24A1. Human monogenic diseases and genome-wide association studies support a critical role for CYP24A1 in regulation of mineral homeostasis, but little is known about its tissue-specific effects. Here, we describe the responses of mice with inducible global deletion, kidney-specific, and intestine-specific deletion of Cyp24a1 to dietary calcium challenge and chronic kidney disease (CKD). Global and kidney-specific Cyp24a1 deletion caused similar syndromes of systemic vitamin D intoxication: elevated circulating 1,25D, 25D, and fibroblast growth factor 23 (FGF23), activation of vitamin D target genes in the kidney and intestine, hypercalcemia, and suppressed parathyroid hormone (PTH). In contrast, mice with intestine-specific Cyp24a1 deletion demonstrated activation of vitamin D target genes exclusively in the intestine, despite no changes in systemic vitamin D levels. In response to a high calcium diet, PTH was suppressed, despite normal serum calcium. In mice with CKD, intestinal Cyp24a1 deletion decreased PTH and FGF23 without precipitating hypercalcemia. These results implicate kidney CYP24A1 in systemic vitamin D regulation while independent local effects of intestinal CYP24A1 could be targeted to treat secondary hyperparathyroidism in CKD.

Authors

Michaela A.A. Fuchs, Alexander Grabner, Melody Shi, Susan L. Murray, Emily J. Burke, Nejla Latic, Venkataramana Thiriveedi, Jatin Roper, Shintaro Ide, Koki Abe, Hiroki Kitai, Tomokazu Souma, Myles Wolf

×

Abstract

BACKGROUND EBV is associated with nasopharyngeal carcinoma (NPC), but the existence of a NPC protective antibody against EBV-associated antigens remains unclear.METHODS Patients with NPC and matched controls were identified from prospective cohorts comprising 75,481 participants in southern China. ELISA and conditional logistic regression were applied to assess the effects of gp42-IgG on NPC. The expression of HLA-II, the gp42 receptor, in nasopharyngeal atypical dysplasia and its effect on EBV infection of epithelial cells were evaluated.FINDINGS gp42-IgG titers were significantly lower in patients with NPC compared with controls across various follow-up years before NPC diagnosis (P < 0.05). Individuals in the highest quartile for gp42-IgG titers had a 71% NPC risk reduction compared with those in the lowest quartile (ORsQ4vsQ1= 0.29, 95% CIs = 0·15 to 0.55, P < 0.001). Each unit antibody titer increase was associated with a 34% lower risk of NPC (OR = 0.66, 95% CI = 0.54–0.81, Ptrend< 0.001). The protective effect of of gp42-IgG was observed in patients diagnosed 5 years or more, 1–5 years, and less than 1 year after blood collection (P < 0.05). HLA-II expression was detected in 13 of 27 specimens of nasopharyngeal atypical dysplasia, and its overexpression substantially promoted epithelial cell–origin EBV infection.CONCLUSION Elevated EBV gp42-IgG titers can reduce NPC risk, indicating that gp42 is a potential EBV prophylactic vaccine target.TRIAL REGISTRATION NCT00941538, NCT02501980, ChiCTR2000028776, ChiCTR2100041628.FUNDING Noncommunicable Chronic Diseases-National Science and Technology Major Project (2023ZD0501003), National Natural Science Foundation of China (82030046, 82073625, 81860601, 82373655), Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2019BT02Y198), and Central Financial Transfer Payment Projects of the Chinese Government, Cancer Research Grant of Zhongshan City.

Authors

Xiang-Wei Kong, Guo-Long Bu, Hua Chen, Yu-Hua Huang, Zhiwei Liu, Yin-Feng Kang, Yan-Cheng Li, Xia Yu, Biao-Hua Wu, Zi-Qian Li, Xin-Chun Chen, Shang-Hang Xie, Dong-Feng Lin, Tong Li, Shu-Mei Yan, Run-Kun Han, Nan Huang, Qian-Yu Wang, Yan Li, Ao Zhang, Qian Zhong, Xiao-Ming Huang, Weimin Ye, Ming-Fang Ji, Yong-Lin Cai, Su-Mei Cao, Mu-Sheng Zeng

×

Abstract

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder. While there is no curative treatment, the immune system’s involvement with autoimmune T cells that recognize the protein α-synuclein (α-syn) in a subset of individuals suggests new areas for therapeutic strategies. As not all patients with PD have T cells specific for α-syn, we explored additional autoantigenic targets of T cells in PD. We generated 15-mer peptides spanning several PD-related proteins implicated in PD pathology, including glucosylceramidase β 1 (GBA), superoxide dismutase 1 (SOD1), PTEN induced kinase 1 (PINK1), Parkin RBR E3 ubiquitin protein ligase (parkin), oxoglutarate dehydrogenase (OGDH), and leucine rich repeat kinase 2 (LRRK2). Cytokine production (IFN-γ, IL-5, IL-10) against these proteins was measured using a fluorospot assay and PBMCs from patients with PD and age-matched healthy controls. We identified PINK1, a regulator of mitochondrial stability, as an autoantigen targeted by T cells, as well as its unique epitopes, and their HLA restriction. The PINK1-specific T cell reactivity revealed sex-based differences, as it was predominantly found in male patients with PD, which may contribute to the heterogeneity of PD. Identifying and characterizing PINK1 and other autoinflammatory targets may lead to antigen-specific diagnostics, progression markers, and/or novel therapeutic strategies for PD.

Authors

Gregory P. Williams, Antoine Freuchet, Tanner Michaelis, April Frazier, Ngan K. Tran, João Rodrigues Lima-Junior, Elizabeth J. Phillips, Simon A. Mallal, Irene Litvan, Jennifer G. Goldman, Roy N. Alcalay, John Sidney, David Sulzer, Alessandro Sette, Cecilia S. Lindestam Arlehamn

×

Abstract

Red blood cells (RBCs), traditionally recognized for their role in transporting oxygen, play a pivotal role in the body’s immune response by expressing TLR9 and scavenging excess host cell-free DNA. DNA capture by RBCs leads to accelerated RBC clearance and triggers inflammation. Whether RBCs can also acquire microbial DNA during infections is unknown. Murine RBCs acquire microbial DNA in vitro, and bacterial DNA–induced (bDNA-induced) macrophage activation was augmented by WT, but not Tlr9-deleted, RBCs. In a mouse model of polymicrobial sepsis, RBC-bound bDNA was elevated in WT mice but not in erythroid Tlr9–deleted mice. Plasma cytokine analysis in these mice revealed distinct sepsis clusters characterized by persistent hypothermia and hyperinflammation in the most severely affected mice. RBC Tlr9 deletion attenuated plasma and tissue IL-6 production in the most severely affected group. Parallel findings in humans confirmed that RBCs from patients with sepsis harbored more bDNA than did RBCs from healthy individuals. Further analysis through 16S sequencing of RBC-bound DNA illustrated distinct microbial communities, with RBC-bound DNA composition correlating with plasma IL-6 in patients with sepsis. Collectively, these findings unveil RBCs as overlooked reservoirs and couriers of microbial DNA, capable of influencing host inflammatory responses in sepsis.

Authors

L.K. Metthew Lam, Nathan J. Klingensmith, Layal Sayegh, Emily Oatman, Joshua S. Jose, Christopher V. Cosgriff, Kaitlyn A. Eckart, John McGinniss, Piyush Ranjan, Matthew Lanza, Nadir Yehya, Nuala J. Meyer, Robert P. Dickson, Nilam S. Mangalmurti

×

Abstract

Heterozygous truncating variants in the sarcomere protein titin (TTN) are the most common genetic cause of heart failure. To understand mechanisms that regulate abundant cardiomyocyte (CM) TTN expression, we characterized highly conserved intron 1 sequences that exhibited dynamic changes in chromatin accessibility during differentiation of human CMs from induced pluripotent stem cells (hiPSC-CMs). Homozygous deletion of these sequences in mice caused embryonic lethality, whereas heterozygous mice showed an allele-specific reduction in Ttn expression. A 296 bp fragment of this element, denoted E1, was sufficient to drive expression of a reporter gene in hiPSC-CMs. Deletion of E1 downregulated TTN expression, impaired sarcomerogenesis, and decreased contractility in hiPSC-CMs. Site-directed mutagenesis of predicted binding sites of NK2 homeobox 5 (NKX2-5) and myocyte enhancer factor 2 (MEF2) within E1 abolished its transcriptional activity. In embryonic mice expressing E1 reporter gene constructs, we validated in vivo cardiac-specific activity of E1 and the requirement for NKX2-5– and MEF2-binding sequences. Moreover, isogenic hiPSC-CMs containing a rare E1 variant in the predicted MEF2-binding motif that was identified in a patient with unexplained dilated cardiomyopathy (DCM) showed reduced TTN expression. Together, these discoveries define an essential, functional enhancer that regulates TTN expression. Manipulation of this element may advance therapeutic strategies to treat DCM caused by TTN haploinsufficiency.

Authors

Yuri Kim, Seong Won Kim, David Saul, Meraj Neyazi, Manuel Schmid, Hiroko Wakimoto, Neil Slaven, Joshua H. Lee, Olivia Layton, Lauren K. Wasson, Justin H. Letendre, Feng Xiao, Jourdan K. Ewoldt, Konstantinos Gkatzis, Peter Sommer, Bénédicte Gobert, Nicolas Wiest-Daesslé, Quentin McAfee, Nandita Singhal, Mingyue Lun, Joshua M. Gorham, Zolt Arany, Arun Sharma, Christopher N. Toepfer, Gavin Y. Oudit, William T. Pu, Diane E. Dickel, Len A. Pennacchio, Axel Visel, Christopher S. Chen, J.G. Seidman, Christine E. Seidman

×

Abstract

The aging process is characterized by cellular functional decline and increased susceptibility to infections. Understanding the association between virus infection and aging is crucial for developing effective strategies against viral infections in older individuals. However, the relationship between Kaposi’s sarcoma–associated herpesvirus (KSHV) infection, a cause of increased Kaposi’s sarcoma prevalence among the elderly without HIV infection, and cellular senescence remains enigmatic. This study uncovered a link between cellular senescence and enhanced KSHV infectivity in human endothelial cells. Through a comprehensive proteomic analysis, we identified caveolin-1 and CD109 as host factors significantly upregulated in senescent cells that promote KSHV infection. Remarkably, CRISPR/Cas9-mediated KO of these factors reduced KSHV binding and entry, leading to decreased viral infectivity. Furthermore, surface plasmon resonance analysis and confocal microscopy revealed a direct interaction between KSHV virions and CD109 on the cell surface during entry, with recombinant CD109 protein exhibiting inhibitory activity of KSHV infection by blocking virion binding. These findings uncover a previously unrecognized role of cellular senescence in enhancing KSHV infection through upregulation of specific host factors and provide insights into the complex interplay between aging and viral pathogenesis.

Authors

Myung-Ju Lee, Jun-Hee Yeon, Jisu Lee, Yun Hee Kang, Beom Seok Park, Joohee Park, Sung-Ho Yun, Dagmar Wirth, Seung-Min Yoo, Changhoon Park, Shou-Jinag Gao, Myung-Shin Lee

×

Abstract

Lysosomes are implicated in a wide spectrum of human diseases, including monogenic lysosomal storage disorders (LSDs), age-associated neurodegeneration, and cancer. Profiling lysosomal content using tag-based lysosomal immunoprecipitation (LysoTagIP) in cell and animal models has substantially moved the field forward, but studying lysosomal dysfunction in patients remains challenging. Here, we report the development of the ‘tagless LysoIP’ method, designed to enable the rapid enrichment of lysosomes, via immunoprecipitation, using the endogenous integral lysosomal membrane protein TMEM192, directly from clinical samples and human cell lines (e.g., induced pluripotent stem cell–derived neurons). Isolated lysosomes were intact and suitable for subsequent multimodal omics analyses. To validate our approach, we applied the tagless LysoIP to enrich lysosomes from peripheral blood mononuclear cells derived from fresh blood of healthy donors and patients with CLN3 disease, an autosomal recessive neurodegenerative LSD. Metabolic profiling of isolated lysosomes revealed massive accumulation of glycerophosphodiesters (GPDs) in patients’ lysosomes. Interestingly, a patient with a milder phenotype and genotype displayed lower accumulation of lysosomal GPDs, consistent with their potential role as disease biomarkers. Altogether, the tagless LysoIP provides a framework to study native lysosomes from patient samples, identify disease biomarkers, and discover human-relevant disease mechanisms.

Authors

Daniel Saarela, Pawel Lis, Sara Gomes, Raja S. Nirujogi, Wentao Dong, Eshaan Rawat, Sophie Glendinning, Karolina Zeneviciute, Enrico Bagnoli, Rotimi Fasimoye, Cindy Lin, Kwamina Nyame, Fanni A. Boros, Friederike Zunke, Frederic Lamoliatte, Sadik Elshani, Matthew Jaconelli, Judith J.M. Jans, Margriet A. Huisman, Christian Posern, Lena M. Westermann, Angela Schulz, Peter M. van Hasselt, Dario R. Alessi, Monther Abu-Remaileh, Esther M. Sammler

×

Abstract

T cells have a remarkable capacity to clonally expand, a process that is intricately linked to their effector activities. As vigorously proliferating T cell also incur substantial DNA lesions, how the dividing T cells safeguard their genomic integrity to allow the generation of T effector cells remains largely unknown. Here we report the identification of the apurinic/apyrimidinic endonuclease-1 (Apex1) as an indispensable molecule for the induction of cytopathic T effectors in mouse models. We demonstrate that conditional deletion of Apex1 in T cells resulted in a remarkable accumulation of baseless DNA sites in the genome of proliferating T cells, which further led to genomic instability and apoptotic cell death. Consequently, Apex1-deleted T cells failed to acquire any effector features after activation and failed to mediate autoimmune diseases and allergic tissue damages. Detailed mutational analyses pinpointed the importance of its endonuclease domain in the generation of T effector cells. We provide further evidence that inhibiting the base repair activities of Apex1 with chemical inhibitors similarly abrogated the induction of autoimmune diseases. Collectively, our study suggests that Apex1 serves as a gatekeeper for the generation of cytopathic T cells and that therapeutically targeting Apex1 may have important clinical implications in the treatment of autoimmune diseases.

Authors

Xiang Xiao, Yong Du, Si Sun, Xiaojun Su, Junji Xing, Guangchuan Wang, Steven M. Elzein, Dawei Zou, Laurie J. Minze, Zhuyun Mao, Rafik M. Ghobrial, Ashton A. Connor, Wenhao Chen, Zhiqiang Zhang, Xian C. Li

×

Abstract

Nerve growth factor (NGF) monoclonal antibodies inhibit chronic pain, yet failed to gain approval due to worsened joint damage in osteoarthritis patients. We report that neuropilin-1 (NRP1) is a coreceptor for NGF and tropomyosin-related kinase A (TrkA) pain signaling. NRP1 was coexpressed with TrkA in human and mouse nociceptors. NRP1 inhibitors suppressed NGF-stimulated excitation of human and mouse nociceptors and NGF-evoked nociception in mice. NRP1 knockdown inhibited NGF/TrkA signaling, whereas NRP1 overexpression enhanced signaling. NGF bound NRP1 with high affinity and interacted with and chaperoned TrkA from the biosynthetic pathway to the plasma membrane and endosomes, enhancing TrkA signaling. Molecular modeling suggested that the C-terminal R/KXXR/K NGF motif interacts with the extracellular “b” NRP1 domain within a plasma membrane NGF/TrkA/NRP1 of 2:2:2 stoichiometry. G α interacting protein C-terminus 1 (GIPC1), which scaffolds NRP1 and TrkA to myosin VI, colocalized in nociceptors with NRP1/TrkA. GIPC1 knockdown abrogated NGF-evoked excitation of nociceptors and pain-like behavior. Thus, NRP1 is a nociceptor-enriched coreceptor that facilitates NGF/TrkA pain signaling. NRP binds NGF and chaperones TrkA to the plasma membrane and signaling endosomes via the GIPC1 adaptor. NRP1 and GIPC1 antagonism in nociceptors offers a long-awaited nonopioid alternative to systemic antibody NGF sequestration for the treatment of chronic pain.

Authors

Chloe J. Peach, Raquel Tonello, Elisa Damo, Kimberly Gomez, Aida Calderon-Rivera, Renato Bruni, Harsh Bansia, Laura Maile, Ana-Maria Manu, Hyunggu Hahn, Alex R.B. Thomsen, Brian L. Schmidt, Steve Davidson, Amedee des Georges, Rajesh Khanna, Nigel W. Bunnett

×

Abstract

Group 2 innate lymphoid cells (ILC2s) play a pivotal role in the development of airway hyperreactivity (AHR). However, the regulatory mechanisms governing ILC2 function remain inadequately explored. This study uncovers V-domain Ig suppressor of T cell activation (VISTA) as an inhibitory immune checkpoint crucial for modulating ILC2-driven lung inflammation. VISTA is upregulated in activated pulmonary ILC2s and plays a key role in regulating lung inflammation, as VISTA-deficient ILC2s demonstrate increased proliferation and function, resulting in elevated type 2 cytokine production and exacerbation of AHR. Mechanistically, VISTA stimulation activates Forkhead box O1 (FOXO1), leading to modulation of ILC2 proliferation and function. The suppressive effects of FOXO1 on ILC2 effector function were confirmed using FOXO1 inhibitors and activators. Moreover, VISTA-deficient ILC2s exhibit enhanced fatty acid oxidation and oxidative phosphorylation to meet their high energy demands. Therapeutically, VISTA agonist treatment reduces ILC2 function both ex vivo and in vivo, significantly alleviating ILC2-driven AHR. Our murine findings were validated in human ILC2s, whose function was reduced ex vivo by a VISTA agonist, and in a humanized mouse model of ILC2-driven AHR. Our studies unravel VISTA as an immune checkpoint for ILC2 regulation via the FOXO1 pathway, presenting potential therapeutic strategies for allergic asthma by modulating ILC2 responses.

Authors

Mohammad Hossein Kazemi, Zahra Momeni-Varposhti, Xin Li, Benjamin P. Hurrell, Yoshihiro Sakano, Stephen Shen, Pedram Shafiei-Jahani, Kei Sakano, Omid Akbari

×

Abstract

BACKGROUND Partial protective immunity to schistosomiasis develops over time, following repeated praziquantel (PZQ) treatment. Moreover, animals develop protective immunity after repeated immunization with irradiated cercariae. Here, we evaluated the development of natural immunity through consecutive exposure-treatment cycles with Schistosoma mansoni in healthy, Schistosoma-naive participants using single-sex, controlled human S. mansoni infection.METHODS Twenty-four participants were randomized in a double-blinded (1:1) manner to either the reinfection group, which received 3 exposures (weeks 0, 9, and 18) to 20 male cercariae, or to the infection control group, which received 2 mock exposures with water (weeks 0 and 9) prior to cercariae exposure (week 18). Participants were treated with PZQ (or placebo) at weeks 8, 17, and 30. Attack rates (ARs) after the final exposure (weeks 19–30) using serum circulating anodic antigen (CAA) positivity were compared between groups. Adverse events (AEs) were collected for safety.RESULTS Twenty-three participants completed the follow-up. No protective efficacy was observed, given an 82% (9 of 11) AR after the final exposure in the reinfection group and 92% (11 of 12) in the infection control group (protective efficacy 11%; 95% CI –24% to 35%; P = 0.5). Related AEs were higher after the first infection (45%) compared with the second (27%) and third (28%) infections. Severe acute schistosomiasis was observed after the first infections only (2 of 12 in the reinfection group and 2 of 12 in the infection control group).CONCLUSION Repeated Schistosoma exposure and treatment cycles resulted in apparent clinical tolerance, with fewer symptoms reported following subsequent infections, but did not result in protection against reinfection.TRIAL REGISTRATION ClinicalTrials.gov NCT05085470.FUNDING European Research Council (ERC) Starting Grant (no. 101075876).

Authors

Jan Pieter R. Koopman, Emma L. Houlder, Jacqueline J. Janse, Olivia. A.C. Lamers, Geert V.T. Roozen, Jeroen C. Sijtsma, Miriam Casacuberta-Partal, Stan T. Hilt, M.Y. Eileen C. van der Stoep, Inge M. van Amerongen-Westra, Eric A.T. Brienen, Linda J. Wammes, Lisette van Lieshout, Govert J. van Dam, Paul L.A.M. Corstjens, Angela van Diepen, Maria Yazdanbakhsh, Cornelis H. Hokke, Meta Roestenberg

×

Abstract

BACKGROUND Myotonic dystrophy type 1 (DM1) is a multisystemic, CTG repeat expansion disorder characterized by a slow, progressive decline in skeletal muscle function. A biomarker correlating RNA mis-splicing, the core pathogenic disease mechanism, and muscle performance is crucial for assessing response to disease-modifying interventions. We evaluated the Myotonic Dystrophy Splice Index (SI), a composite RNA splicing biomarker incorporating 22 disease-specific events, as a potential biomarker of DM1 muscle weakness.METHODS Total RNA sequencing of tibialis anterior biopsies from 58 DM1 participants and 33 unaffected/disease controls was used to evaluate RNA splicing events across the disease spectrum. Targeted RNA sequencing was used to derive the SI from biopsies collected at baseline (n = 52) or a 3-month (n = 37) follow-up visit along with clinical measures of muscle performance.RESULTS The SI demonstrated significant associations with measures of muscle strength and ambulation, including ankle dorsiflexion (ADF) strength and 10-meter run/fast walk (Pearson’s r = –0.719 and –0.680, respectively). The SI was relatively stable over 3 months (intraclass correlation coefficient [ICC] = 0.863). Latent-class analysis identified 3 DM1 subgroups stratified by baseline SI (SIMild, SIModerate, and SISevere); SIModerate individuals had a significant increase in the SI over 3 months. Multiple linear regression modeling revealed that baseline ADF and SI were predictive of strength at 3 months (adjusted R² = 0.830).CONCLUSION The SI is a reliable biomarker that captures associations of RNA mis-splicing with physical strength and mobility and has prognostic utility to predict future function, establishing it as a potential biomarker for assessment of therapeutic target engagement.TRIAL REGISTRATION ClinicalTrials.gov NCT03981575.FUNDING FDA (7R01FD006071), Myotonic Dystrophy Foundation, Wyck Foundation, Muscular Dystrophy Association, Novartis, Dyne, Avidity, PepGen, Takeda, Sanofi Genzyme, Pfizer, Arthex, and Vertex Pharmaceuticals.

Authors

Marina Provenzano, Kobe Ikegami, Kameron Bates, Alison Gaynor, Julia M. Hartman, Aileen Jones, Amanda Butler, Kiera N. Berggren, Jeanne Dekdebrun, Man Hung, Dana M. Lapato, Michael Kiefer, Charles A. Thornton, Nicholas E. Johnson, Melissa A. Hale, on behalf of the Myotonic Dystrophy Clinical Research Network (DMCRN)

×

Abstract

Neutrophils, particularly low-density neutrophils (LDNs), are believed to contribute to acute COVID-19 severity. Here, we showed that neutrophilia can be detected acutely and even months after SARS-CoV-2 infection in patients and mice, while neutrophil depletion reduced disease severity in mice. A key factor in neutrophilia and severe disease in infected mice was traced to the chemokine CXCL12 secreted by bone marrow cells and unexpectedly, endothelial cells. CXCL12 levels were negatively correlated with LDN numbers in longitudinal analyses of patient blood samples. CXCL12 blockade in SARS-CoV-2–infected mice increased blood/lung neutrophil numbers, thereby accelerating disease progression without changing lung virus titers. The exaggerated mortality caused by CXCL12 blockade could be reversed by neutrophil depletion. In addition, blocking interactions between SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2) reduced CXCL12 levels, suggesting a signal transduction from virus-mediated ACE2 ligation to increased CXCL12 secretion. Collectively, these results demonstrate a previously unappreciated role of CXCL12 in diminishing neutrophilia, including low-density neutrophilia, and its deleterious effects in SARS-CoV-2 infections. The results also support the involvement of SARS-CoV-2–endothelial cell interactions in viral pathogenesis.

Authors

Jian Zheng, Hima Dhakal, Enya Qing, Rejeena Shrestha, Anne E. Geller, Samantha M. Morrissey, Divyasha Saxena, Xiaoling Hu, Hong Li, Haiyan Li, Kevin Wilhelmsen, Linder H. Wendt, Klaus Klumpp, Patrick S. Hume, William J. Janssen, Rachel Brody, Kenneth E. Palmer, Silvia M. Uriarte, Patrick Ten Eyck, David K. Meyerholz, Michael L. Merchant, Kenneth McLeish, Tom Gallagher, Jiapeng Huang, Jun Yan, Stanley Perlman

×
Corrigenda
Abstract

Authors

Qianru Huang, Na Tian, Jianfeng Zhang, Shiyang Song, Hao Cheng, Xinnan Liu, Wenle Zhang, Youqiong Ye, Yanhua Du, Xueyu Dai, Rui Liang, Dan Li, Sheng-Ming Dai, Chuan Wang, Zhi Chen, Qianjun Zhou, Bin Li

×

Abstract

Authors

Hanjun Li, Pei Liu, Shuqin Xu, Yinghua Li, Joseph D. Dekker, Baojie Li, Ying Fan, Zhenlin Zhang, Yang Hong, Gong Yang, Tingting Tang, Yongxin Ren, Haley O. Tucker, Zhengju Yao, Xizhi Guo

×

In-Press Preview - More

Abstract

Translocations involving FGFR2 gene fusions are common in cholangiocarcinoma and predict response to FGFR kinase inhibitors. However, response rates and durability are limited due to the emergence of resistance, typically involving FGFR2 kinase domain mutations, and to sub-optimal dosing, relating to drug adverse effects. Here, we develop biparatopic antibodies targeting the FGFR2 extracellular domain (ECD), as candidate therapeutics. Biparatopic antibodies can overcome drawbacks of bivalent monospecific antibodies, which often show poor inhibitory or even agonist activity against oncogenic receptors. We show that oncogenic transformation by FGFR2 fusions requires an intact ECD. Moreover, by systematically generating biparatopic antibodies targeting distinct epitope pairs in FGFR2 ECD, we identified antibodies that effectively block signaling and malignant growth driven by FGFR2-fusions. Importantly, these antibodies demonstrate efficacy in vivo, synergy with FGFR inhibitors, and activity against FGFR2 fusions harboring kinase domain mutations. Thus, biparatopic antibodies may serve as an innovative treatment option for patients with FGFR2-altered cholangiocarcinoma.

Authors

Saireudee Chaturantabut, Sydney Oliver, Dennie T. Frederick, Jiwan J. Kim, Foxy P. Robinson, Alessandro Sinopoli, Tian-Yu Song, Yao He, Yuan-Chen Chang, Diego J. Rodriguez, Liang Chang, Devishi Kesar, Meilani Ching, Ruvimbo Dzvurumi, Adel Atari, Yuen-Yi Tseng, Nabeel Bardeesy, William R. Sellers

×

Abstract

Newly produced platelets acquire a low activation state but whether the megakaryocyte plays a role in this outcome has not been fully uncovered. Mesenchymal stem cells (MSCs) were previously shown to promote platelet production and lower platelet activation. We found healthy megakaryocytes transfer mitochondria to MSCs mediated by Connexin 43 (Cx43) gap junctions on MSCs, which leads to platelets at a low energetic state with increased LYN activation, characteristic of resting platelets. On the contrary, MSCs have a limited ability to transfer mitochondria to megakaryocytes. Sickle cell disease (SCD) is characterized by hemolytic anemia and results in heightened platelet activation, contributing to numerous disease complications. Platelets in SCD mice and human patient samples had a heightened energetic state with increased glycolysis. MSC exposure to heme in SCD led to decreased Cx43 expression and a reduced ability to uptake mitochondria from megakaryocytes. This prevented LYN activation in platelets and contributed to increased platelet activation at steady state. Altogether, our findings demonstrate an effect of hemolysis in the microenvironment leading to increased platelet activation in SCD. These findings have the potential to inspire new therapeutic targets to relieve thrombosis-related complications of SCD and other hemolytic conditions.

Authors

Chengjie Gao, Yitian Dai, Paul A. Spezza, Paul Boasiako, Alice Tang, Giselle Rasquinha, Hui zhong, Bojing Shao, Yunfeng Liu, Patricia A. Shi, Cheryl A. Lobo, Xiuli An, Anqi Guo, William B. Mitchell, Deepa Manwani, Karina Yazdanbakhsh, Avital Mendelson

×

Abstract

BACKGROUND. Current methods for detecting esophageal cancer (EC) are generally invasive or exhibit limited sensitivity and specificity, especially for the identification of early-stage tumors. METHODS. We identified potential methylated DNA markers (MDM) from multiple genomic regions in a discovery cohort and a diagnostic model was developed and verified in a model-verification cohort of 297 participants. The accuracy of the MDM panel was validated in a multicenter, prospective cohort (n = 1429). The clinical performance of identified MDMs were compared with current tumor-associated protein markers. RESULTS. From 31 significant differentially methylated EC-associated regions identified in the marker discovery, we trained and validated a 3-MDM diagnostic model that could discriminate among EC patients and Non-EC volunteers in a multicenter clinical prospective cohort with a sensitivity of 85.5% and a specificity of 95.3%. This panel showed higher sensitivity in diagnosing early-stage tumors, with sensitivities of 56% for Stage 0 and 77% for Stage I, comparing with the performance of current biochemical markers. In population with high risk for EC, the sensitivity and specificity are 85.68% and 93.61% respectively. CONCLUSION. The assessment of tumor-associated methylation status in blood samples can facilitate non-invasive, and reliable diagnosis of early-stage EC, which warrants further development to expand screening and reduce mortality rates. TRIAL REGISTRATION NUMBER. ChiCTR2400083525.

Authors

Ruixiang Zhang, Yongzhan Nie, Xiaobing Chen, Tao Jiang, Jinhai Wang, Yuhui Peng, Guangpeng Zhou, Yong Li, Lina Zhao, Beibei Chen, Yunfeng Ni, Yan Cheng, Yiwei Xu, Zhenyu Zhu, Xianchun Gao, Zhen Wu, Tianbao Li, Jie Zhao, Cantong Liu, Gang Zhao, Jiakuan Chen, Jing Zhao, Gang Ji, Xiaoliang Han, Jie He, Yin Li

×

Abstract

Genome-wide human genetic studies have identified inherited cis-regulatory loci variants that predispose to cancers. However, the mechanisms by which these germline variants influence cancer progression, particularly through gene expression and proteostasis control, remain unclear. By analyzing genomic data from a gastric cancer (GC) case-control study (2,117 individuals), focusing on the ubiquitin-specific protease (USP) family, we identify the single nucleotide polymorphism (SNP) rs72856331 (G>A) in the promoter region of the proto-oncogene USP47 as a putative susceptibility allele for GC (OR = 0.78, P = 0.015). Mechanistically, the risk allele G is associated with enhanced USP47 expression, mediated by altered recruitment of the transcription factor GLI3 and changes in the epigenetic status at promoter. CRISPR/Cas9-mediated single-nucleotide conversion into risk allele G results in increased GLI3 binding and subsequent USP47 upregulation. The depletion of GLI3 results in a reduction of cancer-related phenotypes, similar to those observed following USP47 knockdown. Furthermore, we identify Snai1 as a deubiquitination target of USP47, explaining USP47-dependent activation of epithelial-mesenchymal transition pathway and tumor progression. Our findings identify an important genetic predisposition that implicates the perturbation of transcription and proteostasis programs in GC, offering insights into prevention and therapeutic strategies for genetically stratified patients.

Authors

Bolin Tao, Zhenning Wang, Xuanyi Wang, Aixia Song, Jiaxian Liu, Jianan Wang, Qin Zhang, Zhaolin Chen, Zixian Wang, Wenjie Xu, Menghong Sun, Yanong Wang, Ping Zhang, Tao Xu, Gong-Hong Wei, Fei Xavier Chen, Mengyun Wang

×

Abstract

Infantile hemangioma (IH) is the most common tumor in children and a paradigm for pathological vasculogenesis, angiogenesis, and regression. Propranolol, the mainstay treatment, inhibits IH vessel formation via a β-adrenergic receptor independent off-target effect of its R(+) enantiomer on the endothelial SRY box transcription factor 18 (SOX18). Transcriptomic profiling of patient-derived hemangioma stem cells (HemSC) uncovered the mevalonate pathway (MVP) as a target of R(+) propranolol. Loss and gain of function of SOX18 confirmed it is both necessary and sufficient for R(+) propranolol suppression of the MVP, including regulation of sterol regulatory element binding protein 2 (SREBP2) and the rate-limiting enzyme HMG-CoA reductase (HMGCR). AThe biological relevance of the endothelial SOX18-MVP axis in IH patient tissue was demonstrated by nuclear co-localization of SOX18 and SREBP2. Functional validation in a preclinical IH xenograft model revealed that statins – competitive inhibitors of HMGCR – efficiently suppress IH vessel formation. We propose an novel endothelial SOX18-MVP-axis as a central regulator of IH pathogenesis and suggest statin repurposing to treat IH. The pleiotropic effects of R(+) propranolol and statins along the SOX18-MVP axis to disable an endothelial-specific program may have therapeutic implications for other vascular disease entities involving pathological vasculogenesis and angiogenesis.

Authors

Annegret Holm, Matthew S. Graus, Jill Wylie-Sears, Jerry Wei Heng Tan, Maya Alvarez-Harmon, Luke Borgelt, Sana Nasim, Long Chung, Ashish Jain, Mingwei Sun, Liang Sun, Pascal Brouillard, Ramrada Lekwuttikarn, Yanfei Qi, Joyce Teng, Miikka Vikkula, Harry Kozakewich, John B. Mulliken, Mathias Francois, Joyce Bischoff

×

Advertisement

Review Series - More

Microbiome in Health and Disease

Series edited by Eugene B. Chang

Host-microbe interactions are increasingly recognized for their roles in promoting health as well as in disease pathogenesis. This in-progress series was designed by current JCI Associate Editor Eugene B. Chang to highlight recent advances and challenges in understanding the human microbiome across different organ systems as well as the outlook for microbiome-targeted therapeutics.

×